C++ Basic
C++ Interview Programs
- C++ Interview Programs
- C++ Abundant Number
- C++ Amicable Number
- C++ Armstrong Number
- C++ Average of N Numbers
- C++ Automorphic Number
- C++ Biggest of three numbers
- C++ Binary to Decimal
- C++ Common Divisors
- C++ Composite Number
- C++ Condense a Number
- C++ Cube Number
- C++ Decimal to Binary
- C++ Decimal to Octal
- C++ Disarium Number
- C++ Even Number
- C++ Evil Number
- C++ Factorial of a Number
- C++ Fibonacci Series
- C++ GCD
- C++ Happy Number
- C++ Harshad Number
- C++ LCM
- C++ Leap Year
- C++ Magic Number
- C++ Matrix Addition
- C++ Matrix Division
- C++ Matrix Multiplication
- C++ Matrix Subtraction
- C++ Matrix Transpose
- C++ Maximum Value of an Array
- C++ Minimum Value of an Array
- C++ Multiplication Table
- C++ Natural Number
- C++ Number Combination
- C++ Odd Number
- C++ Palindrome Number
- C++ Pascalβs Triangle
- C++ Perfect Number
- C++ Perfect Square
- C++ Power of 2
- C++ Power of 3
- C++ Pronic Number
- C++ Prime Factor
- C++ Prime Number
- C++ Smith Number
- C++ Strong Number
- C++ Sum of Array
- C++ Sum of Digits
- C++ Swap Two Numbers
- C++ Triangular Number
C++ Program to Check Perfect Number
Photo Credit to CodeToFun
π Introduction
In the realm of programming, exploring the properties of numbers is a fascinating task. One such special type of number is a perfect number.
A perfect number is a positive integer that is equal to the sum of its proper divisors (excluding itself).
In this tutorial, we will explore a C++ program designed to check whether a given number is a perfect number.
The program involves finding the sum of the proper divisors of the number and checking if it equals the original number.
π Example
Let's delve into the C++ code that accomplishes this task.
#include <iostream>
// Function to check if a number is a perfect number
bool isPerfectNumber(int number) {
int sum = 0;
// Iterate through potential divisors up to half of the number
for (int i = 1; i <= number / 2; ++i) {
if (number % i == 0) {
sum += i; // Add the divisor to the sum
}
}
// If the sum of divisors equals the number, it is a perfect number
return sum == number;
}
// Driver program
int main() {
// Replace this value with the number you want to check
int number = 28;
// Call the function to check if the number is a perfect number
if (isPerfectNumber(number))
std::cout << number << " is a perfect number." << std::endl;
else
std::cout << number << " is not a perfect number." << std::endl;
return 0;
}
π» Testing the Program
To test the program with different numbers, modify the value of number in the main program.
28 is a perfect number.
Compile and run the program to check if the specified number is a perfect number.
π§ How the Program Works
- The program defines a function isPerfectNumber that takes an integer number as input and returns true if the number is a perfect number, and false otherwise.
- The function iterates through potential divisors up to half of the number, adding the divisors to the sum.
- Inside the main program, replace the value of number with the desired number you want to check.
- The program calls the isPerfectNumber function and prints the result.
π Between the Given Range
Let's delve into the C++ code that identifies perfect numbers in the specified range.
#include <iostream>
// Function to check if a number is perfect
bool isPerfect(int num) {
int sum = 1; // 1 is always a divisor
for (int i = 2; i * i <= num; ++i) {
if (num % i == 0) {
sum += i;
if (i * i != num) {
sum += num / i;
}
}
}
return sum == num;
}
// Driver program
int main() {
std::cout << "Perfect Numbers in the range 1 to 50:\n";
for (int i = 1; i <= 50; ++i) {
if (isPerfect(i)) {
std::cout << i << " ";
}
}
std::cout << std::endl;
return 0;
}
π» Testing the Program
Perfect Numbers in the range 1 to 50: 6 28
Compile and run the program to see the perfect numbers in the specified range.
π§ How the Program Works
- The program defines a function isPerfect that checks if a given number is a perfect number.
- Inside the function, it iterates through potential divisors and calculates the sum of divisors.
- The main function tests each number in the range from 1 to 50 using the isPerfect function and prints the perfect numbers.
π§ Understanding the Concept of Perfect Number
Before delving into the code, let's understand the concept of perfect numbers. A perfect number is a positive integer that is equal to the sum of its proper divisors (excluding itself).
π’ Optimizing the Program
While the provided program is effective, consider exploring and implementing alternative approaches or optimizations for checking perfect numbers.
Feel free to incorporate and modify this code as needed for your specific use case. Happy coding!
π¨βπ» Join our Community:
Author
For over eight years, I worked as a full-stack web developer. Now, I have chosen my profession as a full-time blogger at codetofun.com.
Buy me a coffee to make codetofun.com free for everyone.
Buy me a Coffee
If you have any doubts regarding this article (C++ Program to Check Perfect Number), please comment here. I will help you immediately.